首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849175篇
  免费   97708篇
  国内免费   350篇
  2016年   9185篇
  2015年   12649篇
  2014年   15057篇
  2013年   21868篇
  2012年   23970篇
  2011年   24464篇
  2010年   16443篇
  2009年   15365篇
  2008年   21859篇
  2007年   23098篇
  2006年   21604篇
  2005年   20820篇
  2004年   20813篇
  2003年   20208篇
  2002年   19712篇
  2001年   34941篇
  2000年   35461篇
  1999年   28448篇
  1998年   10062篇
  1997年   10613篇
  1996年   10160篇
  1995年   10031篇
  1994年   9938篇
  1993年   9860篇
  1992年   24969篇
  1991年   24734篇
  1990年   24520篇
  1989年   23992篇
  1988年   22421篇
  1987年   21475篇
  1986年   20125篇
  1985年   20637篇
  1984年   17211篇
  1983年   15048篇
  1982年   11674篇
  1981年   10772篇
  1980年   10075篇
  1979年   16923篇
  1978年   13278篇
  1977年   12389篇
  1976年   11782篇
  1975年   12957篇
  1974年   13786篇
  1973年   13541篇
  1972年   12761篇
  1971年   11282篇
  1970年   9863篇
  1969年   9511篇
  1968年   8818篇
  1967年   7671篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We have identified mouse and human FKBP60, a new member of the FKBP gene family. FKBP60 shares strongest homology with FKBP65 and SMAP. FKBP60 contains a hydrophobic signal peptide at the N-terminus, 4 peptidyl-prolyl cis/trans isomerase (PPIase) domains and an endoplasmic reticulum retention motif (HDEL) at the C-terminus. Immunodetection of HA-tagged FKBP60 in NIH-3T3 cells suggests that FKBP60 is segregated to the endoplasmic reticulum. Northern blot analysis shows that FKBP60 is predominantly expressed in heart, skeletal muscle, lung, liver and kidney. With N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate, recombinant GST-FKBP60 is shown to accelerate effectively the isomerization of the peptidyl-prolyl bond. This isomerization activity is inhibited by FK506. mFKBP60 binds Ca2+ in vitro, presumably by its C-terminal EF-hand Ca2+ binding motif, and is phosphorylated in vivo. hFKBP60 has been mapped to 7p12 and/or 7p14 by fluorescence in situ hybridization (FISH).  相似文献   
2.
3.
4.
5.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
6.
7.
Random amplified polymorphic DNA (RAPD) analysis was used tostudy variation among and within selectedIxora (Rubiaceae) populationsand mutants. Six populations of I. congesta yielded identicalbanding patterns suggesting genetic uniformity of this species.However, six populations of I. coccinea varieties (three red-flowered,two yellow-flowered and one red-flowered wild-type) exhibitedinfraspecific differences in RAPD profiles. Small and largeleaves of an atavistic mutant cultivar of I. coccinea were alsosubjected to RAPD analysis. An extra band was amplified in thelarge leaves that was absent in small leaves, suggesting thatthe phenotypic alteration in this taxon is due to genetic mutationrather than epigenetic changes. Similarly, an extra band wasdetected in the white sectors of I. Variegated compared to thegreen sectors, suggesting that the shoot apical meristems ofthis cultivar exist as a genetic chimera. DNA gel blot hybridizationwas performed to confirm the specificities of selected bands.Our study indicates that differences among individuals of variouspopulations and mutants may be detected using RAPD markers.Copyright 1999 Annals of Botany Company Ixora L., variegated variety, RAPD fingerprinting, DNA gel blot, intraspecific genetic similarity, atavistic mutant.  相似文献   
8.
Recent studies have shown that Salmonella shedding status affects sows’ microbiota during gestation and that these modifications are reflected in the faecal microbiota of their piglets at weaning. The aims of this study were: (a) to evaluate the persistence, up to the fattening period, of the previously measured link between the microbiota of piglets and their mothers’ Salmonella shedding status; and (b) measure the impact of the measured microbiota variations on their Salmonella excretion at this stage. To achieve this, 76 piglets born from 19 sows for which the faecal microbiota was previously documented, were selected in a multisite production system. The faecal matter of these swine was sampled after 4 weeks, at the fattening stage. The Salmonella shedding status and faecal microbiota of these animals were described using bacteriological and 16S rRNA gene amplicon sequencing respectively. The piglet digestive microbiota association with the Salmonella shedding status of their sows did not persist after weaning and did not affect the risk of Salmonella excretion during fattening, while the birth mother still affected the microbiota of the swine at fattening. This supports the interest in sows as a target for potentially transferrable microbiota modifications.  相似文献   
9.
10.
The cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in Australia, India and China. The larva causes substantial economical losses to legume, fibre, cereal oilseed and vegetable crops. This pest has proven to be difficult to control by conventional means, mainly due to the development of pesticide resistance. We present here the 2.5 A crystal structure from the novel procarboxypeptidase (PCPAHa) found in the gut extracts from H. armigera larvae, the first one reported for an insect. This metalloprotease is synthesized as a zymogen of 46.6 kDa which, upon in vitro activation with Lys-C endoproteinase, yields a pro-segment of 91 residues and an active carboxypeptidase moiety of 318 residues. Both regions show a three-dimensional structure quite similar to the corresponding structures in mammalian digestive carboxypeptidases, the most relevant structural differences being located in the loops between conserved secondary structure elements, including the primary activation site. This activation site contains the motif (Ala)(5)Lys at the C terminus of the helix connecting the pro- and the carboxypeptidase domains. A remarkable feature of PCPAHa is the occurrence of the same (Ala)(6)Lys near the C terminus of the active enzyme. The presence of Ser255 in PCPAHa instead of Ile and Asp found in the pancreatic A and B forms, respectively, enlarges the S1' specificity pocket and influences the substrate preferences of the enzyme. The C-terminal tail of the leech carboxypeptidase inhibitor has been modelled into the PCPAHa active site to explore the substrate preferences and the enzymatic mechanism of this enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号